این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.
Announced in 2016, Gym is an open-source Python library created to assist in the advancement of support learning algorithms. It aimed to standardize how environments are defined in AI research, making released research study more quickly reproducible [24] [144] while providing users with a basic user interface for engaging with these environments. In 2022, new advancements of Gym have been relocated to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, setiathome.berkeley.edu Gym Retro is a platform for reinforcement knowing (RL) research on video games [147] utilizing RL algorithms and research study generalization. Prior RL research focused mainly on enhancing agents to solve single tasks. Gym Retro gives the capability to generalize between games with similar concepts but different appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot representatives at first lack knowledge of how to even stroll, but are given the objectives of learning to move and to push the opposing agent out of the ring. [148] Through this adversarial knowing process, the agents discover how to adapt to changing conditions. When an agent is then gotten rid of from this virtual environment and placed in a new virtual environment with high winds, the representative braces to remain upright, recommending it had actually learned how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors in between agents could produce an intelligence "arms race" that could increase an agent's ability to function even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a group of five OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that discover to play against human players at a high skill level totally through trial-and-error algorithms. Before becoming a group of 5, the very first public presentation occurred at The International 2017, the yearly best championship competition for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of actual time, which the learning software application was a step in the direction of developing software application that can deal with intricate tasks like a surgeon. [152] [153] The system uses a form of support knowing, disgaeawiki.info as the bots learn over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they were able to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against professional gamers, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champs of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 overall games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has shown making use of deep reinforcement knowing (DRL) representatives to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes maker finding out to train a Shadow Hand, a human-like robot hand, to control physical objects. [167] It learns totally in simulation utilizing the very same RL algorithms and training code as OpenAI Five. OpenAI took on the item orientation problem by using domain randomization, a simulation approach which exposes the student to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking cameras, also has RGB cameras to enable the robotic to control an arbitrary things by seeing it. In 2018, OpenAI revealed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could fix a Rubik's Cube. The robot was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present complex physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation technique of producing progressively more tough environments. ADR differs from manual domain randomization by not requiring a human to define randomization varieties. [169]
API
In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let designers call on it for "any English language AI task". [170] [171]
Text generation
The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")
The initial paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his associates, and published in preprint on OpenAI's website on June 11, wiki.dulovic.tech 2018. [173] It demonstrated how a generative model of language might obtain world understanding and procedure long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language design and the follower to OpenAI's initial GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just restricted demonstrative variations at first launched to the general public. The full version of GPT-2 was not immediately released due to concern about potential misuse, consisting of applications for writing fake news. [174] Some specialists expressed uncertainty that GPT-2 postured a considerable threat.
In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to discover "neural fake news". [175] Other researchers, such as Jeremy Howard, alerted of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete version of the GPT-2 language model. [177] Several sites host interactive demonstrations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose students, shown by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 models with as few as 125 million criteria were also trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language designs could be approaching or coming across the basic ability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away launched to the general public for concerns of possible abuse, although OpenAI prepared to enable gain access to through a paid cloud API after a two-month free personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the design can create working code in over a lots programming languages, the majority of successfully in Python. [192]
Several problems with problems, style flaws and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has actually been implicated of releasing copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would terminate support for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated innovation passed a simulated law school bar exam with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, analyze or create up to 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal different technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained advanced results in voice, multilingual, and vision standards, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially beneficial for business, start-ups and designers seeking to automate services with AI agents. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have actually been designed to take more time to consider their reactions, leading to greater precision. These models are especially reliable in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking design. OpenAI likewise revealed o3-mini, a lighter and faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security researchers had the chance to obtain early access to these models. [214] The model is called o3 rather than o2 to avoid confusion with telecoms companies O2. [215]
Deep research study
Deep research study is an agent established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to perform extensive web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic resemblance between text and images. It can significantly be utilized for image classification. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to interpret natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and produce corresponding images. It can create images of realistic objects ("a stained-glass window with a picture of a blue strawberry") in addition to things that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an updated variation of the design with more realistic results. [219] In December 2022, OpenAI published on GitHub software for Point-E, a brand-new basic system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more effective design better able to produce images from complicated descriptions without manual timely engineering and render complicated details like hands and text. [221] It was launched to the public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can generate videos based on brief detailed triggers [223] in addition to extend existing videos forwards or in reverse in time. [224] It can create videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of created videos is unidentified.
Sora's advancement team named it after the Japanese word for "sky", to represent its "limitless innovative potential". [223] Sora's innovation is an adaptation of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos accredited for that purpose, however did not reveal the number or the exact sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it might generate videos as much as one minute long. It likewise shared a technical report highlighting the techniques used to train the model, and the model's abilities. [225] It acknowledged some of its imperfections, including battles mimicing intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", however kept in mind that they need to have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, notable entertainment-industry figures have revealed substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the technology's capability to produce practical video from text descriptions, mentioning its prospective to change storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had actually decided to stop briefly strategies for pipewiki.org broadening his Atlanta-based film studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a big dataset of diverse audio and is also a multi-task model that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can create songs with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to begin fairly however then fall into turmoil the longer it plays. [230] [231] In pop culture, initial applications of this tool were used as early as 2020 for the internet mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI mentioned the songs "reveal regional musical coherence [and] follow conventional chord patterns" but acknowledged that the tunes lack "familiar bigger musical structures such as choruses that duplicate" and that "there is a substantial space" in between Jukebox and human-generated music. The Verge stated "It's technically outstanding, even if the results sound like mushy variations of tunes that may feel familiar", while Business Insider specified "remarkably, a few of the resulting tunes are appealing and sound genuine". [234] [235] [236]
User user interfaces
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches machines to dispute toy issues in front of a human judge. The function is to research whether such a technique may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of 8 neural network models which are frequently studied in interpretability. [240] Microscope was developed to examine the functions that form inside these neural networks easily. The models included are AlexNet, VGG-19, different variations of Inception, and different variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that supplies a conversational interface that permits users to ask questions in natural language. The system then responds with a response within seconds.
این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.